If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+14t+32=0
a = 1; b = 14; c = +32;
Δ = b2-4ac
Δ = 142-4·1·32
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{17}}{2*1}=\frac{-14-2\sqrt{17}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{17}}{2*1}=\frac{-14+2\sqrt{17}}{2} $
| 5n+300=2200 | | 13.6=n+5.8 | | 3y+16=-2(y-3) | | -23-4x=-x-15 | | 300+12x=200+16x | | 5+6x=3+5x | | 97/8=1x+-51/4 | | 8.1(x-4=-11.1+1 | | -103=6x+17= | | 2m/3=24 | | 2(x+5)=16* | | 3y(y-4)=5y(y+8) | | 5+6x=3+5 | | 2+z/5=4 | | 3y+16=12(y-3) | | 21x-3(3x-3)=11+6x | | 5+1x=0 | | $300+12x=$200+$16x | | -3(-1+p)=36 | | (5y+5)=7y-9 | | X(7x+45)=28 | | 8-y/9=1 | | -13=-5y+2(y+4) | | -14.2k=-173.24 | | (x-4)=2(x-5) | | 8-y÷9=1 | | 3(1+8n)=147 | | x-4(x+1)=-5x | | 7x-3x+2x=-8x-8 | | 359+45x=100 | | 2q−1=7 | | 5+5/6=1/3x-1 |